Sheet (7)

- **4.1.** Find the z-transform of
 - (a) $x[n] = -a^n u[-n-1]$
 - (b) $x[n] = a^{-n}u[-n-1]$
- **4.3.** A finite sequence x[n] is defined as

$$x[n] = \{5, 3, -2, 0, 4, -3\}$$

Find X(z) and its ROC.

- **4.6.** Find the z-transform X(z) and sketch the pole-zero plot with the ROC for each of the following sequences:
 - (a) $x[n] = (\frac{1}{2})^n u[n] + (\frac{1}{3})^n u[n]$
 - (b) $x[n] = (\frac{1}{3})^n u[n] + (\frac{1}{2})^n u[-n-1]$
 - (c) $x[n] = (\frac{1}{2})^n u[n] + (\frac{1}{3})^n u[-n-1]$
- 4.7. Let

$$x[n] = a^{|n|}$$
 $a > 0$ (4.66)

- (a) Sketch x[n] for a < 1 and a > 1.
- (b) Find X(z) and sketch the zero-pole plot and the ROC for a < 1 and a > 1.
- **4.15.** Find the inverse z-transform of

$$X(z) = z^{2} \left(1 - \frac{1}{2}z^{-1}\right) \left(1 - z^{-1}\right) \left(1 + 2z^{-1}\right) \qquad 0 < |z| < \infty$$
 (4.79)

4.21. Find the inverse z-transform of

$$X(z) = \frac{2z^3 - 5z^2 + z + 3}{(z - 1)(z - 2)} \qquad |z| < 1$$

4.32. A causal discrete-time LTI system is described by

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{9}y[n-2] = x[n] \tag{4.88}$$

where x[n] and y[n] are the input and output of the system, respectively.

1

- (a) Determine the system function H(z).
- (b) Find the impulse response h[n] of the system.
- (c) Find the step response s[n] of the system.